I’ve been living in the Tokyo area since the time of the Fukushima Daiichi catastrophe (2011/03), and for the most part it has been good to see the international concern and increased support for the anti-nuclear movement. Yet some of the reactions haven’t been helpful at all. There has been a lot of alarmism and hyperbole over the tragedy arising from a failure to see it in the historical context of similar industrial accidents and atrocities.
There have been many disasters which have had devastating impacts on vulnerable populations, yet most of them have received less international recognition and sympathy than Fukushima. Much of the outrage over Fukushima has implied, unintentionally perhaps, an outrage that it happened to people in an advanced nation, or that it threatens the west coast of North America with what some believe to be an apocalyptic wave of radiation. There has never been this much concern for the fallout that affected the inhabitants of the Bikini Islands, Christmas Island, Fangataufa, Lop Nor, or “The Polygon” in Kazakhstan—some of the sites where the US, the UK, France, China and the USSR tested nuclear weapons. One could add to the list dozens of eco-disaster zones where forgotten people have had to live with the imposed risks of chemical pollution.
Many decry the fact that there hasn’t been a wider forced and well-compensated evacuation of Fukushima, but this would come as no surprise to the inhabitants of the places mentioned above. The Evacuate-Fukushima-Now battle cry hasn’t been thought out too well because it fails to recognize the moral questions that arise when non-victims speak for the victims—thinking that it is their job to rescue people who have decided to stay and haven’t asked for help.
There has been criticism of anti-nuclear groups that says they have abandoned the victims, but at this point, almost four years after the meltdowns, it is hard to imagine what outside groups could do to force the national government to launch a wide-scale evacuation, or offer compensated voluntary evacuation. I can’t fault Japanese anti-nuclear groups for having abandoned this cause and chosen instead to focus on preventing future catastrophes.
In order to put Fukushima in a global and historical context of ecological disasters, the rest of this article will discuss the humanitarian and environmental catastrophes in Kazakhstan and the Southern Urals of Russia. These Central Asian catastrophes have never received the level of attention given to the Fukushima Daiichi meltdowns, even though the environmental, health and social impacts have been far worse.
The region forms a triangle, with a point at the north in Russia’s plutonium factories near the city of Chelyabinsk, a point in the southwest by the Aral Sea, and another in the east by the Soviet nuclear test site at “the polygon,” near the town of Semey. For comparison, one could make a triangle of similar dimensions and proportions in America, with the nuclear sites of Hanford, Washington, Rocky Flats, Colorado and the Nevada Test Site as the points of the triangle. Each side of both triangles would be about 1,000 kilometers (660 miles) long.
Both of these fateful triangles could be described as places afflicted by the same suite of devastating ecological assaults. Both have been dammed (damned), mined, soaked with agrochemicals, and contaminated with nuclear fallout.[1] However, the triangle in Central Asia outdoes its American counterpart by all standards of comparison.
Chelyabinsk
The environmental damage was so much worse in the USSR because of its circumstances at the end of WWII. Millions of people had died in the war, the nation was materially devastated from two decades of Stalinist purges and war, and the thanks it got for holding off the Germans on the eastern front was being dumped as an American ally, losing the aid that had come through the lend-lease program, and feeling threatened with nuclear annihilation. This situation put the Soviets in panic mode as they rushed to rebuild the nation and construct an atomic arsenal that would deter their former ally. The Americans also scrimped on safety as they built their first bombs, but the Soviets took recklessness to new levels. They rushed to build a plutonium factory in a remote region of the Southern Urals near the city of Chelyabinsk, using soldiers and prisoners for the first few years before they could build a proper atomic city housing an elite corps of privileged scientists and engineers.[2]
An explosion at the Maiak factory in 1957 released 2 million curies over an area that was 6 by 48 kilometers in area.[3] By this time, the routine operations of the plant had also dumped 3.2 million curies in the Techa River before authorities took action. Massive evacuation programs were carried out, but not before damage had been done to the agricultural communities downwind and along the Techa. Victims are still fighting for recognition of the link between radiation and their illnesses, stillbirths, birth defects, and trans-generational genetic damage. The environmental devastation remained secret to wider Soviet society until the late 1980s. One reason for the large and rapid response after Chernobyl was that these earlier disasters had given the Soviet bureaucracy its know-how in nuclear disaster response.
There is further contamination in this area 500 kilometers southwest of Maiak at the Totsk nuclear test site.
There have been many disasters which have had devastating impacts on vulnerable populations, yet most of them have received less international recognition and sympathy than Fukushima. Much of the outrage over Fukushima has implied, unintentionally perhaps, an outrage that it happened to people in an advanced nation, or that it threatens the west coast of North America with what some believe to be an apocalyptic wave of radiation. There has never been this much concern for the fallout that affected the inhabitants of the Bikini Islands, Christmas Island, Fangataufa, Lop Nor, or “The Polygon” in Kazakhstan—some of the sites where the US, the UK, France, China and the USSR tested nuclear weapons. One could add to the list dozens of eco-disaster zones where forgotten people have had to live with the imposed risks of chemical pollution.
Many decry the fact that there hasn’t been a wider forced and well-compensated evacuation of Fukushima, but this would come as no surprise to the inhabitants of the places mentioned above. The Evacuate-Fukushima-Now battle cry hasn’t been thought out too well because it fails to recognize the moral questions that arise when non-victims speak for the victims—thinking that it is their job to rescue people who have decided to stay and haven’t asked for help.
There has been criticism of anti-nuclear groups that says they have abandoned the victims, but at this point, almost four years after the meltdowns, it is hard to imagine what outside groups could do to force the national government to launch a wide-scale evacuation, or offer compensated voluntary evacuation. I can’t fault Japanese anti-nuclear groups for having abandoned this cause and chosen instead to focus on preventing future catastrophes.
In order to put Fukushima in a global and historical context of ecological disasters, the rest of this article will discuss the humanitarian and environmental catastrophes in Kazakhstan and the Southern Urals of Russia. These Central Asian catastrophes have never received the level of attention given to the Fukushima Daiichi meltdowns, even though the environmental, health and social impacts have been far worse.
The region forms a triangle, with a point at the north in Russia’s plutonium factories near the city of Chelyabinsk, a point in the southwest by the Aral Sea, and another in the east by the Soviet nuclear test site at “the polygon,” near the town of Semey. For comparison, one could make a triangle of similar dimensions and proportions in America, with the nuclear sites of Hanford, Washington, Rocky Flats, Colorado and the Nevada Test Site as the points of the triangle. Each side of both triangles would be about 1,000 kilometers (660 miles) long.
Both of these fateful triangles could be described as places afflicted by the same suite of devastating ecological assaults. Both have been dammed (damned), mined, soaked with agrochemicals, and contaminated with nuclear fallout.[1] However, the triangle in Central Asia outdoes its American counterpart by all standards of comparison.
Chelyabinsk
The environmental damage was so much worse in the USSR because of its circumstances at the end of WWII. Millions of people had died in the war, the nation was materially devastated from two decades of Stalinist purges and war, and the thanks it got for holding off the Germans on the eastern front was being dumped as an American ally, losing the aid that had come through the lend-lease program, and feeling threatened with nuclear annihilation. This situation put the Soviets in panic mode as they rushed to rebuild the nation and construct an atomic arsenal that would deter their former ally. The Americans also scrimped on safety as they built their first bombs, but the Soviets took recklessness to new levels. They rushed to build a plutonium factory in a remote region of the Southern Urals near the city of Chelyabinsk, using soldiers and prisoners for the first few years before they could build a proper atomic city housing an elite corps of privileged scientists and engineers.[2]
An explosion at the Maiak factory in 1957 released 2 million curies over an area that was 6 by 48 kilometers in area.[3] By this time, the routine operations of the plant had also dumped 3.2 million curies in the Techa River before authorities took action. Massive evacuation programs were carried out, but not before damage had been done to the agricultural communities downwind and along the Techa. Victims are still fighting for recognition of the link between radiation and their illnesses, stillbirths, birth defects, and trans-generational genetic damage. The environmental devastation remained secret to wider Soviet society until the late 1980s. One reason for the large and rapid response after Chernobyl was that these earlier disasters had given the Soviet bureaucracy its know-how in nuclear disaster response.
There is further contamination in this area 500 kilometers southwest of Maiak at the Totsk nuclear test site.
from The Defense Industries of the Newly Independent States of Eurasia. 1993 http://www.lib.utexas.edu/maps/commonwealth/dfnsindust-kazakhstan.jpg |
When the first bombs were ready, the Soviets began to test
them 1,200 kilometers to the southeast in eastern Kazakhstan. The Preparatory
Commission for the Comprehensive Test Ban Treaty sums up the story:
Between 1949 and 1989, 456
atomic and thermonuclear devices were exploded at the Semipalatinsk Test Site
(STS)... on the surface
and in the atmosphere… The approximate cumulative explosive yield of the tests
conducted before 1963… was 6.4 Mt. This was about six times greater than the
explosive yield of the above ground tests at the Nevada Test Site and about six
percent of the yield of the tests conducted in the Marshall Islands.
A number of genetic
defects and illnesses in the region, ranging from cancers to impotency to birth
defects and other deformities, have been attributed to nuclear testing. There
is even a museum of mutations at the regional medical institute in Semey… It consists
of a room filled with jars containing monstrosities caused by nuclear testing...
As well as an epidemic of babies born with severe neurological and major bone deformations, some without limbs, there have also been many cases of leukemia and other blood disorders, according to James Lerager’s 1992 article Second Sunset--Victims of Soviet Nuclear Testing. Lerager goes on to say: “The director of the Oncology Hospital in Semipalatinsk estimates that at least 60,000 people in the region have died from radiation-induced cancers; “officially,” the area has the lowest cancer rate in Kazakhstan. [4][5]
As well as an epidemic of babies born with severe neurological and major bone deformations, some without limbs, there have also been many cases of leukemia and other blood disorders, according to James Lerager’s 1992 article Second Sunset--Victims of Soviet Nuclear Testing. Lerager goes on to say: “The director of the Oncology Hospital in Semipalatinsk estimates that at least 60,000 people in the region have died from radiation-induced cancers; “officially,” the area has the lowest cancer rate in Kazakhstan. [4][5]
“There was also this
doctor, Toleukhan Nurmagambetov, who thought that the only way you could sort
out the birth defects common among this cohort of people—now 200,000 to 300,000
strong—with damaged genes from their parents who had been irradiated, is to
genetically control who can have a child.”
-Anthony Butts, director of “After
the Apocalypse” (2010),
a film about the
modern-day victims of the weapons tests at The Polygon [6]
|
The passage above indicates two important points:
inhabitants of the continental US were spared the large fallout from
thermonuclear (hydrogen) bombs, although what did fall on them had health impacts nonetheless. The
American tests of thermonuclear weapons in the Pacific involved significantly more fallout compared to the Soviet
thermonuclear tests in Kazakhstan. Whereas there was some relative benefit to
having the fallout come down in the ocean in the American tests (a fact which
is of no comfort to Marshall Islanders), it was all the more appalling that the
Soviets conducted thermonuclear tests on land, in the more heavily populated
area of Central Asia.
At the time, weapons testing regimes insisted that
thermonuclear devices were clean and fallout-free because they involved fusion
rather than fission and were detonated in the air. However, thermonuclear bombs
were triggered by fission devices, and they were encased in tons of natural
(unenriched) uranium which were vaporized in the blasts, and this was a well
understood risk at the time.
To this day, the inventory of hydrogen bomb fallout is
still a well-kept secret. Internet searches reveal some studies that have been done
on Marshall Island soils and Marshall Islanders’ urine to determine what was
absorbed at a distance, but the details on what was produced by each explosion
are not available. A report in Health Physics[7] listed 24 selected fission
products found in the soils of the Marshall Islands, but such studies have been
criticized for deliberate omission of the most important by-products of weapons
tests.
A recent article by Chris Busby explains:
… fallout from atmospheric nuclear testing
contains enormous amounts of uranium. This should be no surprise as nuclear
bombs contain a lot of uranium, and most of it remains unfissioned after a
nuclear explosion. But what will come as news to a great many people is the
importance in the fallout of an isotope of uranium that few of us have even
heard of: uranium-234, a highly radioactive alpha emitter which concentrates in
the ‘enriched uranium’ (EU) used in nuclear bombs. All uranium binds to DNA and
causes cancer and genetic effects in the children of those exposed—but U-234 is
especially hazardous… The UK and USA military have consistently failed to take
account of the exposures to these uranium components of the bombs in all the
official reports published by their experts.[8]
The
Aral Sea
The Aral Sea is not recognized as a region contaminated
with nuclear fallout, but it might be the world’s most notorious environmental
catastrophe. The mass media and school textbooks have given it good coverage,
defining it as a disastrous consequence of state planning during the Soviet
era. A massive irrigation system was built in the 1960s to turn the region into
a giant cotton plantation and grain producer, but the famous consequence was
the reduction of the Aral Sea to a quarter of its original size. The high rates
of cancer, disease, birth defects, stillbirths and trans-generational genetic
damage are blamed on the heavy use of agrochemicals that drained into the sea
and concentrated as the sea dried up. As the water receded, the toxins
dispersed in the wind and entered the bodies of nearby inhabitants. This is the
standard view that can be found in numerous reports on this environmental
disaster, but the proximity of the nuclear test site made me wonder if there
was more to it. The polygon test site is 1,000 kilometers away—which is far,
but not so far when one is considering the fallout from 456 atomic and
thermonuclear devices. In addition, it's not apparent that scientific studies
ever looked into what hundreds of underground nuclear tests did to the region's
hydrology, or whether climate change, unrelated to the irrigation, had anything
to do with the changing flows.
Internet searches turn up very little information that
links radioactive contamination to the Aral Sea, but there are studies on this
question that seem to have been overlooked in the mainstream narrative of what
happened to these once-magnificent inland waters. The Navruz Project was a
thorough survey of the entire watershed of the Amudarya and Syrdarya, the main
tributaries of the Aral Sea that flow through Kazakhstan, Kyrgyzstan,
Tajikistan, and Uzbekistan. The project was funded by these nations, as well as
by Sandia Laboratories (US Department of Energy). One report on the Navruz
Project stated:
Data collected as part of the first two
phases of the Navruz Project (2000-2006) show significant radioactive
contamination levels at localized points in the region, due primarily to the
Soviet-era legacy of uranium mining and waste processing. These contaminants
represent a significant threat to public health and regional security, since
natural events (such as heavy rainfall and flooding) or terrorist activities
could result in the accidental or intentional movement of radioactive materials
into public water supply systems. Interestingly, results from across the basin
do not indicate widespread, serious contamination problems as many researchers
expected.[9]
It appears that data on the Navruz Project were massaged and twisted in various
ways as they were polished for this report published by NATO. Researchers within
the nuclear industrial complex must have wanted to take the focus off of nuclear weapons and nuclear
reactors, regardless of the country involved. The hazard is instead vaguely and
innocuously referred to as mining and processing-related. The uranium in the
watershed is assumed to have come from mining and not from bomb detonations.
The words “movement of radioactive materials” allude to what would be a
devastating break of radioactive mine tailings ponds, but the word choices
completely gloss over this hazard. If the authors gave any thought to the
effects of Soviet weapons testing, they may have decided to just consider it as
a form of “waste processing.”
It may seem odd that Western nuclear scientists would
downplay the mistakes of their historical nuclear rival. However, this rivalry
should be understood as being actually quite flexible. When the nuclear
industrial complex is itself under threat, it reacts like a professional sports
league does when the reputation of the sport comes into question during a scandal. The rival
teams come together in common cause. Preserving the nuclear status quo in the
world is largely driven by the need to preserve jobs, investments and profits
as much as by the need to preserve the status quo in global security. This fact was laid
bare in the aftermath of Chernobyl when Western and Soviet specialists convened
to publish a report under the auspices of the IAEA. One might have expected the
Soviets to deny and minimize the severity of the disaster, but it was the
Western delegates who insisted that the Soviets reduce their predictions of
Chernobyl-induced fatalities from 40,000 to 4,000. This collaboration among
rivals makes it clear that the real enemy feared by the industry is domestic
opposition.[10]
The following quote from another report on the Navruz
Project shows, interestingly,
what was omitted and de-emphasized as the findings were shaped into their final
form for the NATO publication cited above. The non-standard use of English in
the report (the occasional dropped articles and so on) is quite telling, as it
reveals the voice of local experts. It shows what scientists in Central Asia
wanted to include, in the previously mentioned report, before it went to
editors working for NATO:
It was found that the Syrdarya and Amudarya
Rivers carry away more than 1000 Ci per year of radioactivity into the Aral
Sea. Territories more contaminated with radionuclides and heavy metals have
been revealed. [11]
How dangerous is a Curie?
1 Curie (Ci) = 37,000,000,000
Becquerels (Bq), 1 Bq = 1 atomic disintegration per second.
After the Chernobyl disaster
29,400 square kilometers of the USSR were contaminated at levels above
185,000 Bq/square meter, from only cesium 137.[12] As a crude comparison
then, 1,000 Ci is enough to contaminate 200,000,000 square meters (or 200
square kilometers) at this level of 185,000 Bq/square meter, if it were
spread evenly (37,000,000,000,
Aral Sea in 1960: 68,000
square kilometers (= 68,000,000,000 square meters), 2004: 17,160 square
kilometers.
Assuming the flow of 1,000 Ci per
year lasted for 40 years, this would total 1,480,000,
The flow of 1,000 Ci per year
into the Aral Sea doesn’t create Chernobyl-level contamination,
but it is getting way beyond natural background levels. It could
be a significant inhalation hazard in the environment, depending on how it
settled in the drying seabed then blew off in the wind. There would
be synergistic harmful effects on health when radiation and chemical
contamination co-exist.
For comparison
with 1000 Ci per year: the Maiak disaster and the Techa River
contamination dumped a total of 5.2 million Ci into the environment.
|
These very different perspectives on the Navruz Project
illustrate how this large-scale international research project could massage the reality to make it more palatable. The data doesn’t lie, but institutions can distort,
deflect, omit and use euphemisms to make the data portray the desired picture.
The revelation that the Aral Sea is contaminated with radiation
may be old news, and its contribution to health damage in the area might be
unknowable, but what is startling is the way radiation always gets ignored and
chemical pollution is the preferred culprit when health damage becomes evident.
The global community has a remarkable amnesia about nuclear history. When it is
considered in the research on the Aral Sea watershed, it is mentioned only in veiled language. The problem is
acknowledged as careless mining and processing practices. Furthermore, the reports suggest that this
situation resulted from mistakes of the past when in fact Kazakhstan, in spite of its principled rejection of nuclear weapons, continues to be a major player in global uranium production. The spin attempts to gloss over the serious environmental
hazards of uranium mining, and it obscures the connection between mining uranium and
the morality of possessing of nuclear and depleted uranium
weapons, and enabling the nuclear power
industry.
When the Aral Sea is considered in this new light, the
absurdity and evil of nuclear weapons development are clearly revealed. Here we
see one disastrous mega-project that was ruined by itself and another. A
well-intended plan to expand agricultural production was doomed in itself by its ambition and
reliance on agrochemicals, but, as if it were following a plan with built-in
redundancy to assure failure, the chemical pollution got a boost from the state’s
nuclear weapons project. Finally, as if this weren’t enough, the Soviets put
their bioweapons lab on what was formerly an island in the Aral Sea.[13]
I keep these ecological tragedies in mind when I see people
in social media telling me that Tokyo isn’t fit for human habitation. To tell
the truth, I was aware of the city’s dioxin levels and acid rain a long time
ago, so that was sort of how I felt about it before 2011, but I was living
there anyway. Perhaps Fukushima City really should be abandoned, but the
nuclear disaster taught us all the valuable lesson that the evacuation of urban
areas is impossible. No nation has the space and economic resources to relocate large
urban populations. This is one of the better
arguments for shutting down nuclear reactors. But the record shows that people
carry on living in contaminated cities. People didn’t flee Los Angeles when
details of the 1959 Rocketdyne meltdown became known twenty years later.[14] Life went on as the mysterious
rise in cancer rates came amid all the other confounding factors in the city’s
famous smog.
So my predictions for the doomsayers is sorry,
unfortunately, Tokyo will still hold the 2020 Olympics, and the athletes won’t
be fainting in the streets with radiation sickness. The Olympics are
unstoppable, and evacuation of Fukushima is a pipe dream, but there is a good
chance that public resistance can keep most or all of the nuclear reactors from
restarting.
[1]Howard G. Wilshire, Jane E. Nielson and Richard W. Hazlett, The American West at Risk: Science, Myths, and Politics of Land Abuse and Recovery (Oxford University Press, 2008).
[2] Kate Brown, Plutopia: Nuclear Families, Atomic Cities, and the Great Soviet and American Plutonium Disasters (Oxford University Press, 2012).
[3] Brown, p. 239.
[4] James Lerager, “Second Sunset,” Sierra, Mar/Apr 1992, Vol. 77 Issue 2, p. 60.
[5] The Soviet Union’s Nuclear Testing Program, Preparatory Commission for the Comprehensive Nuclear Test Ban Treaty (CTBTO). http://www.ctbto.org/nuclear-testing/the-effects-of-nuclear-testing/the-soviet-unionsnuclear-testing-programme/
[6] Tiffany O'Callaghan, “The Human Cost of Soviet Nuclear Tests,” New Scientist, May 11, 2011. http://www.newscientist.com/blogs/culturelab/2011/05/the-aftermath-of-nuclear-war.html
[7] Harold L. Beck, André Bouville, Brian E. Moroz, and Steven L. Simon, “Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests,” Health Physics, August 2010, 99(2) pages 124–142. http://europepmc.org/articles/PMC2904645/
[8] Chris Busby, “The ‘Forgotten’ Uranium Isotope—Secrets of the Nuclear Bomb Tests Revealed,” The Ecologist, November 4, 2014. http://www.theecologist.org/News/news_analysis/2619320/the_forgotten_uranium_isotope_secrets_of_the_nuclear_bomb_tests_revealed.html
[9] H.D. Passell et al., “The Navruz Project.” In Brit Salbu and Lindis Skipperud (editors), Nuclear Risks in Central Asia, 2008, p. 190-199.
[10] Thomas Johnson (director), The Battle of Chernobyl, Play Films, 2006. 01:18:30~01:21:30.
[11] D.S Barber et al. “Radiological Situation of River Basins of Central Asia Syrdarya and Amudarya According to the Results of the Project ‘Navruz,’” In N. Birsen, Kairat K. Kadyrzhanov (editors), Environmental Protection Against Radioactive Pollution, 2003, Netherlands: Kluwer Academic Publishers, p. 39. http://books.google.co.jp/books?id=XBZZSmxJca0C&pg=PA39&lpg=PA39&dq=aral+sea+radioactivity&source=bl&ots=uzTiBVHjMC&sig=4Cu75Mxx1evBgrDygi3yOKv4OG8&hl=en&sa=X&ei=RXlYVOSIKYbp8gXR44DIBQ&ved=0CEQQ6AEwCjgK#v=onepage&q=aral%20sea%20radioactivity&f=false
[12] Environmental Consequences of the Chernobyl Accident and their Remediation: Twenty Years of Experience, Report of the Chernobyl Forum Expert Group ‘Environment.’ Table 3.1.5. Vienna: International Atomic Energy Agency (IAEA). 2006. pp. 23–25.
http://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf
[13] Christopher Pala, “Anthrax Island,” The New York Times, January 12, 2003. http://www.nytimes.com/2003/01/12/magazine/anthrax-island.html?src=pm&pagewanted=2&pagewanted=all
[14] Joan Trossman Bien and Michael Collins, “50 Years After America’s Worst Nuclear Meltdown,” Pacific Standard, August 24, 2009. http://www.psmag.com/navigation/nature-and-technology/50-years-after-nuclear-meltdown-3510/
No comments:
Post a Comment