2013/02/17

Another final warning in Russia

The map shows the site of the massive 1908 meteor explosion.
The 2013 meteor exploded over Chelyabinsk, to the west near Kazakhstan.
I don’t believe in a god that puts mankind at the top of her priorities. Also, unlike a lot of scientists, economists, politicians and other so-called rational thinkers who say we need nuclear because it has a low carbon impact, I don’t see it written in the stars anywhere that we have been promised all the energy we want for the maintenance of our present lifestyles. We cannot rationalize further destruction by just crying (boohoo), “But we need the energy!”
Even though I don’t believe in signs from god, if I did, I would surely take this week’s meteorite explosion over Russia as a final warning to mankind to change its ways. Let’s just say that if there were a god who cared to communicate with us, but she was somehow unable to speak because of a cosmic language barrier, a sign such as this visitation from space would be just the thing to deliver the message. With the entire globe to choose from, why this part of Russia?
from Mashable.com 
Russia was the best place to do it because the meteor blast drew attention to the much more destructive 1908 Tunguska meteorite explosion in Siberia. At the same time, the location of the recent event was over the once-secret nuclear weapons facilities located around the city of Chelyabinsk. The Chelyabinsk-40 nuclear facility (now called Mayak), 72 km northwest of Chelyabinsk, was in 1957 home to one of the worst radiological disasters in history. The area is still contaminated and still has many nuclear facilities and nuclear waste sites. The message should be clear. If a similar meteorite explosion should strike any of the hundreds of sites that store nuclear waste above ground, a disaster worse than Fukushima or Chernobyl is possible. 
   This week's incident also makes us wonder how the Soviet government would have reacted if a meteorite explosion had happened over Chelyabinsk during the 1962 Cuban Missile Crisis. As it was this week in the post-Cold War context, some witnesses to the explosion said their first thought was that WW III had started.
   The various national and international agencies that manage nuclear safety have thought of every possible hazard that could strike nuclear facilities. They build walls to protect from tsunamis, design reactors to withstand earthquakes, and containment structures to withstand aircraft crashes, but they have no defense against meteorite impact. They will admit there is no defense, but the risk is considered to be so small that it is worth taking. This week it doesn't seem so small.
All meteorite impacts since 2300 BC. Javier de la Torre created 
this map using data from The Meteoritical Society. 
The Chernobyl explosion was enough of a final warning for me to turn anti-nuke, but it seems that other members of the human race need a few more hints. The Fukushima catastrophe happened, but still many people think we can take heed of the “lessons learned” and safely manage a few hundred nuclear powered steam turbines, and all their waste, forever. What Fukushima taught me was that the low probability thing that wouldn’t happen can happen tomorrow. Anyone who has ever bought a lottery ticket has come to the same conclusion, only with an optimistic expectation of an equally low probability.
Perhaps the human race has over-indulgent parents willing to give us
more than one "final warning." But patience has its limits.
This week an over-kind fate, or god, if you prefer, handed us another “final warning” that we ignore at our peril. A 300 kiloton meteor explosion occurred right over Russia’s legacy of nuclear production, in the country that was previously blasted with the Tunguska meteor event. A message? Naaaah. Just a coincidence, right?

Further reading:

2013/02/14

Radiation is only the half of it

On the seldom discussed serious chemical effects (non-radiological effects) of radionuclides

(whole body counter available in Fukushima 
to measure internal radiation - address below)
   In a better world a scientist like Yuri Bandazhevsky would be nominated for a Nobel prize, but instead he was thrown in prison in 2001 by the Belarussian government (for dubious charges of corruption) when his research on the effects of radioactive cesium suggested that the impacts of the Chernobyl accident were much more severe than officials wanted to admit. He was released in 2005 and eventually took a teaching post in France to be free of the continuing government restrictions on his scientific work. A lengthy report about his persecution is documented by the American National Academy of Sciences report on his case.   A revised English translation of Bandazhevsky’s Radioactive Cesium and the Heart appeared recently on Fukushima Voice. It seems to be a great improvement over the previous translation published by Belrad in 2001 (Yu. I. Bandazhevsky. “Radioactive cesium and heart.” Minsk: Belrad. 2001. 59 pp. ISBN 985-434-080-5.)
   Having read the chapter, I think that many readers would not get past the long descriptions of biochemical processes and they would miss the important conclusions. I’ve written a summary of the chapter with excerpts of and comments on the most important passages.
Bandazhevsky begins by explaining three known ways by which the harmful effects of cesium have been discovered:

1. ECG examination of children of various ages

2. Studies of the organs of individuals in the areas affected by the Chernobyl accident

3. Laboratory experiments on animals
   He states that cesium has a direct impact on cell structures and indirect impacts on health through the effects of cesium on the endocrine and nervous system. Cesium behaves chemically like potassium, thus it can be absorbed and utilized by organisms for any function in which potassium normally plays a role.
   The chapter discusses primarily the effects of cesium on the heart, but the effects on the kidneys and liver are also significant. The damage to chemical processes in these three organs has an interactive and compounding effect.
Bandazhevsky covers the effects on the heart, kidneys and liver:

Heart

   “A direct effect of radioactive cesium on the heart is due to its selective accumulation in the myocardial cells compared to other organs and tissues… Perhaps it is due to the intensive functioning of the Na+/K+ pump: since Cs-137 is similar to potassium, it is absorbed by cardiomyocytes fairly easily… This is accompanied by suppression of a very essential enzyme such as creatine phosphokinase, which is involved in the cellular energetic metabolism.”

   “In reality, accumulation of Ca2+ in the cells under the influence of radioactive cesium can occur due to the energy deficit caused by damage to the energy supply system within the cell membranes, including mitochondria and structures of sarcoplasmic reticulum. That is why the cells cannot release Ca2+ in a timely manner. Calcium ions enter the cells very intensively due to the destruction of membrane phospholipids by free radical hydroxyl groups. In this situation it does not take much effort to cause significant myocardial damage. Death of cardiomyocytes can occur due to prolonged energy deficits, caused by physical exertion, acute infectious processes and alcohol intoxication.”

   This last point is quite significant because it means that cesium can be the ultimate cause of a death whose proximate cause, and only recognized cause, is heart failure. Cesium lowers the threshold for stress that a healthy cardiovascular system can normally tolerate. The effects on a child can be the most devastating. 
   The official studies of the effects of the Chernobyl disaster found that the poor health of people in the affected areas was attributable to deteriorated economic conditions, political instability, poor lifestyle and diet, depression, radiophobia, a mentality of victimization, and welfare dependency. Some of the Japanese specialists now responsible for the health of people in Fukushima visited Chernobyl many times after 1986 and had already accepted this official view of Chernobyl, well before the Fukushima Daiichi meltdowns. But according to Bandazhevsky’s findings, cesium should rather be regarded as a stealthy and clever murderer that is capable of making investigators fail to recognize a crime scene. The case is closed as murders are recorded in the files as slow suicides. 


Kidneys

“Injuries to the cardiovascular system could not be examined separately from other organs and systems, particularly the kidneys. As the main organ of excretion of radioactive cesium from the body, kidneys are significantly affected even at a small Cs-137 concentration. Kidneys also undergo similar damaging effects as the cardiovascular system...”

“Development of renal insufficiency is the reason for accumulation of metabolic waste products in the body. They have toxic effects, along with the toxic effects of radioactive cesium itself, on the vital organs and systems.” 

“Injuries to the vascular system of kidneys may be one of the main reasons for the increase in blood pressure, especially diastolic pressure, in children.”

Liver

“Impairment to the synthetic function of hepatocytes is manifested as a progressive decrease in the synthesis of L1-globulin and L2-globulin with an increasing concentration of radioactive cesium in the body. This will undoubtedly affect the state of metabolism in other organs, including the heart.”

   Perhaps the most important fact mentioned in the chapter is the remark that it is the chemical properties of cesium that are as damaging or more damaging than its radiological properties:

“It should be noted that the effect of incorporated radioactive cesium on humans and animals suggests its involvement in energetic and metabolic processes, primarily as a chemical element rather than a source of radiation. Nevertheless, the latter involvement, as a source of radiation, cannot be excluded completely. This is especially pronounced with prolonged exposure to small amounts of this radionuclide.”

   The nuclear industry, and related regulatory agencies, are content not to tell the public much about the chemical properties of radionuclides. After the Fukushima accident, the public was eventually given figures estimating the radiological dose to the thyroid or the whole body dose of radiation, and of course they were assured that levels were nothing to worry about. But the chemical effects of iodine, strontium and cesium were never discussed. For the nuclear industry, it is fortunate that most people have no idea what it means to discuss the chemical vs. the radiological properties of radionuclides. The same applies for discussions of uranium, plutonium and other toxins associated with nuclear fuel facilities and defunct weapons factories. If you are a resident of the West End of Toronto and you are concerned about the nuclear fuel factory in your neighborhood, you can’t be satisfied by just being told that radiation levels in the neighborhood are at normal background levels. You have to wonder about the presence of uranium as a heavy metal poison inside and outside the plant, or the chance that there could be dangerous releases in the case of a fire.
   In the conclusion of his chapter, Bandazhevsky comments on the widespread lack of official interest in his field of research: 

“Unfortunately, the attitude of the present society to this issue is, at best, indifference. We pay a very high price for this in the form of human lives. Intelligent ignorance leads to a tragedy. To a great extent the blame rests on medical scientists. Not only did they not try to inform the population using previously obtained data, but they did not study adverse changes in the body due to incorporation of radionuclides.”

   The phrase “intelligent ignorance” might strike English speaking readers as odd, perhaps a translation of an unfamiliar concept. What he means here is deliberate neglect by experts and leaders who know that these dangers are real but also that they have embarrassing and costly implications for governments that are responsible for the health of their citizens.
   Finally, Bandazhevsky makes some statements about the precise amounts of contamination that should be of concern. Long-term incorporation of levels higher than 30 Bq/kg should not be tolerated, while he stresses once again that lower levels are also dangerous, but the harm they cause can remain invisible. Levels of 10~20 Bq/kg lower the threshold for stress that the cardiovascular system can normally withstand: “It might become impossible to function in a variety of stressful and ordinary situations, such as physical and mental stress, hypoxia, extreme temperature fluctuations, drinking alcohol, infections, and allergic diseases.”
   The majority of the Japanese population now appears to have a safe food supply, in terms of radionuclide contamination from the 2011 nuclear accident. This is not because the authorities stepped in immediately to do the right thing. They were slow, complacent and reactive every step of the way. To the extent that we have a safe food supply now, it is thanks to citizens who did their own monitoring and forced private companies to realize that they would be badly penalized by consumers if they were found to be selling contaminated food. Government just followed their lead. But this is not to say that contaminated food is not being sold off to companies willing dilute it into processed foods. The one saving grace of the situation is that Japan imports much of its food and, unlike the people in the Chernobyl area, the people of Fukushima are not poor peasants who will have to spend years eating contaminated food grown on their own farms and gardens. All in all, however, Bandazhevsky’s research shows there is no reason for Japanese people to become complacent about the health effects of the Fukushima Daiichi catastrophe.


Sources:

Yury Bandazhevsky. Radioactive Cesium and Heart Chapter 4: Pathophysiological Characteristics of Effects of Radioactive Cesium on HeartRevised English translation by Yuri Hiranuma

Earlier translation:

Yu. I. Bandazhevsky. Radioactive cesium and heart (pathophysiologic aspects). Minsk: Belrad. 2001. 59 pp. ISBN 985-434-080-5

Little, Mark P., Anna Gola, and Ioanna Tzoulaki. “A Model of Cardiovascular Disease Giving a Plausible Mechanism for the Effect of Fractionated Low-Dose Ionizing Radiation Exposure.” PLoS Computational Biology 5, no. 10 (October 23, 2009): e1000539.


Saul Chernos. “GE’s West End Secret: 50 Years Later, Uranium Pellet Factory Still a Mystery to Locals.” Now Toronto. October 18-25, 2012 Vol. 32 No. 7.

Citizens Radioactivity Measuring Station (CRMS)
(whole body counter available to measure internal radiation)

Pasenaka Misse 1F
Okitama Machi 8-8
Fukushima City, Fukushima Prefecture
Japan 960-8034
TEL: 024-573-5697
FAX: 024-573-5698
MAIL: info@crms-jpn.com
市民放射能測定所
960-8034
福島市置賜町8-8
パセナカMisse 1F


2013/02/09

The non-existence of market demand for a clean environment

Consumers camped out on the street and lined up for hours for the
chance to contribute 5% of their income to nuclear waste cleanup. NOT!

The BBC reported this week, "The cost of cleaning up the Sellafield nuclear waste site has reached £67.5bn [US$105 billion] with no sign of when the cost will stop rising..."
Sellafield could be compared to the large nuclear sites in the US such as Hanford and Oak Ridge, or La Hague in France and Rokkasho in Japan. Sellafield has a long history as a nuclear weapons facility, and as a production and reprocessing center for fuel for nuclear reactors. In addition, it serves as a storage site of nuclear waste until a permanent solution is found.
Media reports about government expenses and debts leave the public inured to the impact of large numbers like £67.5 billion. Most people are not likely to stop and think much about $105 billion or put it into any perspective. One useful comparison is to look at the much more reasonable $1.2 billion price tag for the new structure being built over the Chernobyl reactor ruins.
Another way to look at the cost of Sellafield cleanup is to compare it to the national debt. Britain had a public debt in 2012 of £1,278.2 billion, (or 86.8% of GDP), so the Sellafield cleanup will cost about 5% of the present public debt. That may seem like a small share, but it is a lot for an expense that is out of sight and out of mind for most of the public, and it comes at a time when there is a dire need to reduce the debt and the deficit. Furthermore, in these constrained economic times, there is intense competition for funds for health care, education, defense and the other commonly known uses of the national budget.
Some politicians, and heads of corporations that stand to profit, say that these enormous expenses for nuclear cleanup are not so extreme and they will, in any case, provide jobs and economic stimulus. This is true to some extent, but if the cleanup did really have such fine advantages, all the countries with this problem would not be so terribly behind schedule in tackling the problem. British MP Margaret Hodge said in the BBC report an “enormous legacy” of nuclear waste exists at the plant. “Over decades, successive governments have failed to get to grips with this critical problem.” A labor union officer said, “There needs to be immediate change at the top of the consortium and a radical re-evaluation of the piecemeal hiving-off of the nuclear sector to private companies that are clearly ill-equipped to cope and have little interest in ensuring Britain has world-class nuclear facilities.”
In other words, environmental remediation projects have to be conceived of differently from other ways money is spent in a modern economy. There is no market demand for environmental cleanup, and the people who profit from the work have an incentive to not ever finish the job or ever do it effectively. The longer they take, the longer they remain employed. 
Normal market demand is for essential goods, things for which people feel a natural need. There is also market demand for luxuries, but no one wants to spend 5% of personal income on nuclear waste vitrification. Spending money on waste cleanup, or on any effort to prevent further damage to the environment, gives no bang for the buck. People don’t want it the way they want iphones. Spending on waste is, in this sense, a waste. When an economic argument is made for it, there is a false notion that it is good because it creates jobs, not because it is the right thing to do for future generations. If it didn't create jobs, would that be reason not to spend on it? Environmental cleanup is a debt, a cost to be paid for benefits received in the past, in some cases by people who are dead and gone. Thus argument for environmental cleanup has to be moral, not economic, and the decision to clean up has to come from a collective will to make the necessary sacrifices.
Compared to Britain, Japan is in a much worse situation. It has a national debt of $11 trillion, over 200% of GDP, and if the desired inflation of the present government leads to higher interest rates, it will face a terminal debt* meltdown. In this dire circumstance, a few dozen nuclear reactors are headed for decommissioning because so many of them are just now being found to exist on active seismic faults. Whether or not a few of the old ones are deemed safe enough to operate, and whether or not a few new “modern and safe” ones are built in the future, these enormous decommissioning costs will exist. In addition, temporary spent fuel storage capacity is full, and a permanent solution for disposal has to be built. Then there is the Monju fast breeder reactor and the Rokkasho fuel reprocessing site, both of which devoured billions of dollars in national treasure, but never functioned as promised. It is just a matter of time before the government admits they need to be scrapped too. Then, lest we forget, there is the 30-year cleanup job at the smoldering ruins of Fukushima Daiichi. After the looming debt default happens, there will have to be some extremely creative thinking applied in order to establish a social and economic system that can deal with the challenges ahead.
   I think the first step will consist of saying sorry and thanks to the generation of patriotic savers who put their money in low interest bonds and savings accounts. This money has financed the debt for the last twenty years, but it is becoming pretty obvious that it will never be repaid. They might as well say now that borrowed money should be thought of as a kind of tax, retroactively defined as such. In Japan's case, the creditors are also the voters who elected the government, so it is hard to imagine how a government will choose to break the news to its own people.  For many years the comforting truism about the Japanese debt was "it's OK, we owe it to ourselves," but Japanese people may come to wish that they borrowed from foreigners. The historical record shows that only occasionally do foreign creditors organize an army and invade. They are usually content to negotiate a controlled implosion. That might be preferable to the unprecedented situation of a nation defaulting on this scale on its own citizen-creditors.

Further reading: 

If you can't take my word for it, read what two professional economists have to say about Japan's looming debt "singularity:"

Edward Hugh and Claus Vistesen. "Japan's Looming Singularity." Credit Writedowns. February 12, 2013.

Source on British debt: UK Debt Bombshell.

"Government debt reaches record 997 trillion yen." [$10.84 trillion at 92 yen per dollar]. Yomiuri Shinbun. February 10, 2013.

*Terminal debt: the point at which the payments on the interest of a debt are greater than the revenues of the debtor.

2013/02/06

The Chernobyl Prelude

Wreck of the K-431 Soviet nuclear submarine
that exploded on August 10, 1985
There is something sad but instructive in looking back to the early years of this century to learn which nuclear safety issues were of concern to researchers and policy makers in Japan. Instead of proper planning for earthquakes and tsunamis, or an overhaul of the corrupt Japanese nuclear regulatory system, there were worries over the hazards to Japan of Russia’s operating and decommissioning of Soviet era nuclear submarines in the Russian Far East. There were also studies on how much cesium from Chinese weapons tests was landing on Japanese soil.
Compared to what has befallen the country since 2011, these concerns seem quaint, even enviable. The cesium from Chinese weapons tests was miniscule compared to the levels we have to deal with now. It would be nice if the trace deposits from China were our biggest worry.
The concern over the Soviet submarines was more substantial. The Chazhma Bay (alternatively spelled Chasma) explosion of 1985, near Vladivostok, raised some alarming questions about the hazards posed by the Soviet fleet to Russia and countries nearby – North and South Korea, China, and Japan. Or, actually, it would have raised alarming questions if anyone had known about it.
Japan was so concerned about the danger by the late 1990s that it donated money and technical assistance after the fall of the Soviet Union, yet the 1985 accident remained largely unreported, even after 1993 when the Russian government released previously classified information about it.
In a scientific paper about the accident (Takano et al., 2001) authored by Japanese and Russian researchers, the authors concluded that the impact was mostly local. The paper was concerned with possible future accidents, similar to the actual accident that occurred in 1985, with emphasis on the possible effects on Japan if winds had blown in the opposite direction. It concluded, “… the radioactive material might be transported through the atmosphere to Japan in one to several days and might contaminate a wide area of Japan. However, the radiological dose to the area might not be significant.”
The severity of an accident would depend on whether fuel rods were new or old, and whether the Russian government would know or release information about the nuclear inventory involved in the accident. In the case of the 1985 accident, precise data was hard to determine because of Soviet secrecy. A 2003 paper about the accident (Sivintsev, 2003) asked in its title, “Was the Chazhma Accident a Chernobyl of the Far East?” and responded in the negative:

“It is shown that the emission of long-lived radioecologically significant radionuclides in Chazhma was approximately 0.79 Ci, while in the Chernobyl accident this emission was 90 MCiThese quantitative estimates are used to show that the Chazhma accident is not analogous to the 1986 accident in Chernobyl.”

Nonetheless, the accident was still horrific for those involved. Ten people died instantly in the explosive criticality incident and ensuing steam explosion, and 10 others had acute radiation exposure. In total, 290 cleanup workers had to live with the consequences of their exposure. Chernobyl was too big to be kept a secret, but the Chazhma accident was successfully covered up until 1993. In 1998, 205 responders were finally recognized as atomic veterans - equal to Chernobyl liquidators in rights to compensation. Ironically, their accident was overshadowed by Chernobyl happening only eight months later. The local environment was contaminated, both the surrounding hills and the bay. The remains of the submarine itself are still too hot to handle.
The accident illustrates in typical fashion the most unsettling thing about nuclear accidents. In spite of the utmost attempts to foresee problems and control complex systems, it is impossible to know all the complex ways complex systems can break down. In this case, the refueling operation was being done between the submarine and a ship parked alongside it. There had been some problems with the refueling, and these were tragically compounded by the fact that someone had forgotten to make sure that marine traffic in the area was stopped. A navy boat passed by, causing a large wake that disrupted the fuel transfer at a critical moment.


Chazhma Bay Accident Summary:

·           deaths: 10
·           total radiation released: 259 PBq (Fukushima: 840 PBq)*
·           iodine 131 released: 29 GBq
·           workers exposed to radiation: 290
·           workers who suffered acute radiation sickness: 10
·           sediments of Chazhma Bay are 2,000 times more radioactive than before the accident
·           the K-431 submarine wreck continues to be a source of radiation
·           other submarine wrecks in the bay still emit radiation
·           the Dunai Peninsula is still heavily contaminated
·           runoff from the accident’s disposal site still leaks into the bay
·           saving grace: the fuel rods were new and contained almost no strontium or cesium isotopes

source: IPPNW Poster Exhibition: Hibakusha Worldwide - Chazhma Bay, Russia International Physicians for the Prevention of Nuclear War
*This figure for Fukushima may not be accurate. No definitive methodology or tally for the catastrophe has been agreed upon by the scientific community. One reliable estimate was as study by the Norwegian Institute for Air Research that estimated two of the radionuclide releases as 16,700 PBq of short-lived xenon 133, and 36 PBq of long-lived cesium 137 – 42% of the cesium 137 released from Chernobyl. The total release would include data for many more radionuclides.

Unanswered questions:

The few studies on this accident that exist have nothing to tell about how widely the short-lived radionuclides were dispersed. The world learned about the Chernobyl accident from the staff at a Swedish nuclear reactor. They had picked up radiation outside their workplace and set off alarms when they entered it. The Chazma Bay accident begs the question of whether something similar happened at Japanese nuclear power plants. The paper by Takano et al. lists in the references a person by the name of Y. Murakami, and the reference is described as “Radiation monitoring at three TEPCO nuclear reactors facing the Sea of Japan in August 1985, Private Communication, July (2000).” Takano et al. claim that the wind direction, as usual in summer months, was away from Japan toward Russia, and this private communication confirmed that no spike in radiation levels was observed in August 1985. However, it is odd that an unidentified private communication is the best recorded evidence that these researchers could find. If TEPCO had the records, why could they not be made public?
Reading the paper by Takano et al. after the Fukushima catastrophe, it is easy to smile sardonically. In retrospect, we see that the scientific establishment was worried about Russian submarines when it faced the largest threat from its own nuclear power plants – an infrastructure for which everyone had far too much confidence and complacency. But the lesson for everyone in the world is that the next accident is never like the last accident. We need to expect what we least expect. Even if Japan restarts some of its nuclear power plants, the next major nuclear accident will probably happen somewhere else. I’m starting to wonder if it will be in China, Taiwan or South Korea and the winds will blow the fallout over Japan anyway. Japan seems to be destined in history to play a central role as nuclear victim. The only nuclear bombs used in war were dropped on Hiroshima and Nagasaki, the Castle Bravo tests in the Pacific contaminated the Japanese tuna fleet (and tuna catch), the Chazhma Bay accident may or may not have released a radioactive plume that drifted over Japan, and with Fukushima Daiichi Japan victimized itself.

Sources:

The Bellona Foundation. “What is the Committee for Veterans at Special Risk hiding?” October 29, 2007.

Commander Gregory D. Young, U.S. Navy (Retired) Russian Sub Casualties. Proceedings, April 2005.

IPPNW Poster Exhibition: Hibakusha Worldwide - Chazhma Bay, Russia. International Physicians for the Prevention of Nuclear War.

Hideshi Fujiwara. “Atmospheric Deposition of Radioactive Cesium (137Cs) Associated with Dust Events in East Asia.” Bulletin of the National Institute of  Agro-Environmental Sciences. pp. 85 115. 2010.

Takano, Makoto, Vanya Romanova, Hiromi Yamazawa, Yuri Sivinitsev, Keith Compton, Vladimir Novikov, and Frank Parker. “Reactivity Accident of Nuclear Submarine Near Vladivostok.” Journal of Nuclear Science and Technology 38, no. 2. pp. 143-157. 2001.

Yu. V. Sivintsev. “Was the Chazhma Accident a Chernobyl of the Far East?” Atomic Energy. June 2003, Volume 94, Issue 6, pp 421-427.

2013/02/03

In Praise of Amateur Hour

Cocos Island, Guam.
A tourist resort now exists where US Navy sailors once
washed down their ships after taking part in nuclear weapons tests.

In 1905, the man who showed the world the theoretical possibility of the energy in matter (E=mc2) was a Swiss patent clerk who did physics as a hobby. Ninety years later, Mark Purdey was another science “amateur” who revealed some very interesting, additional features of atomic energy.
Purdey was a British cattle farmer who passed up a chance to attend university and instead chose to stay on the farm. Nonetheless, he had to become a self-educated scientist in order to question the logic behind the conventional views of what was causing brain wasting diseases in British cattle. His investigations led him to a sound theory that these conditions were not contagious or spread by feed, but were caused by imbalances of manganese and copper, which were ultimately caused by government imposed applications of drugs and pesticides.
One might, at this point, be tempted to dismiss him as an amateur obsessed with wild, speculative theories, but his ideas were taken seriously by many specialists in the field. Prince Charles lent him support, government officials listened, and reports in the mainstream media took him seriously. Even though he did not dislodge the reigning approach to managing brain wasting diseases, his theories still hold up and seem more plausible as we gain some un-panicked perspective on the 1990’s outbreak of Mad Cow Disease. 
Purdey's obituary in The Telegraph stated, “… his theory failed to withstand scientific scrutiny, a fact that Purdey himself could never bring himself to admit,” but the report also noted, contradicting itself, that it was not a failure to withstand scrutiny but a failure to gain funding for research. Support for proper testing of his hypothesis was abandoned while he suffered mysterious threats to his life and damages to his property. This suggests that the official line is again like the drunk who has lost his keys. The keys were lost in the dark somewhere, but he insists on looking only under the lamppost.
In 2003, Mark Purdey’s curiosity took him to Guam where he investigated another outbreak of neurological diseases. He was interested in anomalies that happened in unique times and places for unclear reasons. Since the 1950s, in one corner of Guam, the native people had been afflicted with Parkinson’s disease, Alzheimer’s and cancer at alarmingly high rates. Government studies had concluded that the problem was related to mineral deficiencies and a naturally toxic diet that consisted of too much fruit from the cycad tree. But this explanation didn’t make sense because the natives had been eating this food for centuries without knowing these diseases.
The scientists who did the official studies were unable to look up from their trenches toward disciplines that could have provided more plausible explanations. A simple regard for the recent history of the area was enough to point to a cause that a good investigator should have been aware of. After the nuclear weapons tests in the Marshall Islands, over 100 navy ships came to Cocos Island, a small island just offshore from the south tip of Guam, to be scrubbed down and decontaminated.
Purdey examined the dead coral around the island and found it was highly contaminated with strontium 90, and other products of nuclear fission. Unfortunately, the native Chamorro people had a custom of grinding up coral and adding it to a chewable mixture of betel nut and papula leaves. He asked whether “… the Chamorros’ unwitting use of the radioactive coral with the betel could represent the most concentrated source of strontium 90 contamination that has ever been endured by the human race.” (In addition to the radiation, there is the officially acknowledged contamination of this small island with PCBs, but this was not the focus of Purdey’s research.)
The most interesting aspect of Purdey’s research is that he applied his knowledge of neurochemistry to raise questions about the effects of radiation that go beyond official research that admits only cancer as a health effect of radiation. Purdey presented an explanation of how the ingestion of radionuclides could affect not only DNA but also protein structures, and the disruption of protein structures are known to be the cause of Alzheimer’s and Parkinson’s – diseases which have clearly been on the rise since the dawn of the chemical and nuclear age.
The sad irony of Mark Purdey’s life is that in 2006 he died at age 52 from brain cancer, leaving the obvious question of whether he was exposed to carcinogens during his investigations of contaminated environments.
Cocos Island Resort
Mark Purdey’s report on Guam also contains an interesting observation about the Japanese tourists who come to the island. Throughout nuclear history, there are numerous examples of Japanese society running obliviously into the arms of the beast that struck them first in Hiroshima. After the Castle Bravo tests of 1954 irradiated fishermen and the tuna catch, Japan still went with nuclear power and the American light water reactor design that failed and poisoned northern Japan in 2011. In 2003, Purdey ironically observed, “I felt a chilly shiver down my spine as I watched the arrival of yet another boatload of ‘uninformed’ Japanese tourist girls onto the newly developed ‘Cocos Island Resort.’”
This brief summary can’t do justice to Purdey’s work. The links below lead to more information and his accounts of the scientific investigations he conducted during his career.

Read on…

Cocos Island Resort.


Recent evidence supporting Purdey's theory: 
Deloncle R, Guillard O, Bind JL, Delaval J, Fleury N, Mauco G, Lesage G. "Free radical generation of protease-resistant prion after substitution of manganese for copper in bovine brain homogenate." Neurotoxicology. May 2006; 27(3): 437-44.

2013/02/01

Lifetime Dose

Depiction of a scene from
Voltaire's Candide (1759)
After the reactors in Fukushima exploded in March 2011, residents of the affected areas were advised to keep a journal recording, as best as they could remember, their movements and diet over the weeks just after the disaster. This would help them in the future if they developed health problems or wanted to make claims for compensation. This was an onerous task, but it was no doubt a necessary and excellent idea. In fact, it turns out that it might be a good idea for everyone to maintain such a journal over their lifetime.
Everyone alive today is getting exposed to radiation above what was once natural background – a term which may not mean what it used to because “natural” radon levels are confounded with the radon put into the air because of industrial activities. We live in the fallout from weapons testing and nuclear accidents, live near weapons factories and nuclear fuel processing sites, we spend long hours in airplanes, we get x-rays and other radiological medical procedures, and we face higher exposures to all of these if we are one of thousands of people classified as “radiation workers.”
Dr. Kristen Shrader-Frechette has made the case in a scientific journal for a national radiation dose registry (RDR) for American radiation workers. The number of workers classified as such would surprise most people:

“In Canada, whose population is one tenth that of the United States, there are more than 550,000 radiation workers in more than 80 occupations. These include not only nuclear workers (those employed in commercial nuclear-power generation or by those who build and test nuclear weapons) but also radiation workers who are employed in academic research, food processing, industrial imaging, weld-defect inspection, leak tracing, automobile-steel testing, mineral-deposits discovery, and so on. In Switzerland, radiation workers number 60,000; in South Korea, 65,000. In the United States, 1.5 million radiation workers are occupationally exposed to ionizing radiation each year. Of this number, 300,000 nuclear workers are employed in the commercial nuclear industry.” She adds further in her paper, “… no nation routinely measures cumulative radiation dose and risk from all sources and all exposure classes, even for high-exposure workers.”

Shrader-Frechette’s paper points out the deficiencies of present practices meant to control and track exposures only on the job, and only in limited time frames. A nuclear plant worker who is close to his annual limit for workplace exposure faces a dilemma if his doctor tells him he needs to have a whole-body computed tomography (CT) scan, with an exposure that might add 10 mSv to his workplace exposure. His health might be endangered, and this will put him over the limit, but as far as his employer is concerned, he can still work because the medical exposure is not counted. Incidental and unknown exposures will also not be counted. Not counted is time spent in airplanes at 30,000 feet, time spent in basements with high radon levels, time spent sitting beside people who have recently had radiation therapy, or the cumulative lifetime exposure from x-rays and medical scans.
This concern may sound alarmist and exaggerated, but considering the millions of people affected on and off the job, it would seem wise to apply the precautionary principle. No one can prove that radiation has not contributed to the increasing rates of cancer and endocrine and neurological disorders; whereas there are plenty of research findings that suggest it has been a factor. On both sides of this controversy there is no debate that radiation damages DNA, proteins and cell structures.
It is strange that Shrader-Frechette’s paper includes so many occupations as radiation workers but excludes medical personnel. In recent years, there have been numerous reports of radiological negligence by medical equipment manufacturers and technicians. Medical experts are also sounding the alarm about complacency and sloppiness in radiological treatments within medical institutions. It is common for insufficiently trained staff to be exposed without being aware of the hazards around them. (Supporting sources, with cited text have been placed at the end of this article).
   Someone who begins a nursing career today might want to keep one of those Fukushima journals, or even a dosimeter badge, in order to know twenty years later what her long-term exposure was.
This is not far-fetched because Shrader-Frechette concludes that the Radiation Dose Registry should be extended to “… include medical and occupational radiation exposures for the entire US population. At a fourth stage, all fallout, accident, consumer-product, and other exposures for the US population might be added.” 
Such is the state of radiation risk management in developed nations. In other parts of the world, radiation risks are often higher, but public awareness is non-existent and controls are utterly lacking. The French NGO CRIIAD (Commission de Recherche et d'Information Indépendantes sur la Radioactivité) reports this month on the appalling situation in Niger where French uranium mines have failed to stop radioactive scrap metals from being sold throughout the country or shipped overseas. The report states:

“The scrap metal is contaminated with heavy metal isotopes associated with uranium, such as uranium 238, thorium 230, radium 226, lead 210, and polonium 210. This results in an external irradiation of the population and a risk of internal contamination, depending on how the recycled scrap is used (domestic use is a possibility). Certain of these substances are particularly radiotoxic when ingested or inhaled. The contamination is long-term, considering the long half-life of uranium 238 (4.5 billion years) and radium 226 (1,600 years). The bad practices of Areva’s affiliated companies thus leads to an increased health risk to the population, and beyond to other groups in the event of sales to foreign countries.”

These uranium mines in Niger have had a long, difficult relationship with the locals. When Tom Zoellner was writing his book Uranium, his first attempt to visit the mines was stopped by an attempted attack on the bus he was on. It was then that he learned about the local rebel groups and their resentment about the pollution from the mines and their failure to bring economic development. Yet the French are utterly dependent on the mines for their energy supplies, just as they have other vital interests in Algeria and Mali that that they are being forced to protect quite robustly this year. If Voltaire were alive today he would say, “C’est à ce prix que vous vous chauffez de l’électricité en Europe.”
This scrap metal being resold overseas is a fitting illustration of reaping the whirlwind. The people in Niger handling this scrap may be much more deserving of a proper Radiation Dose Registry, but their dilemma also means that the scrap will go, for example, from Niger to China to your tissue containers or your child’s bicycle basket



And it’s worse than just a couple isolated cases


A Scripps Howard News Service investigation looked at NRC records and the current state of reporting on radioactive materials, turning up numerous flaws in the U.S.'s current system, and finding a wide range of cases in which radioactive materials and products were brought to the U.S.
NRC records show 18,740 documented cases involving radioactive materials in consumer products, in metal intended for consumer products or other public exposure to radioactive material. The U.S. Government Accountability Office estimates there are some 500,000 unaccounted for radioactively contaminated metal objects in the U.S., and the NRC estimates that figure is around is 20 million pounds of contaminated waste. [emphasis added]

   All the more reason for everyone to start wondering about their lifetime cumulative dose of radiation.

Radiological Hazards for Patients and Medical Professionals

Bryant Furlow. “How to Keep Radiation Therapy Safe for Patients.” Oncology Nurse Advisor. December 19, 2011:

For patients, unnecessary procedures (usually imaging procedures) and radiation dosing errors represent the bulk of risk from medical radiation, whereas incidental, unintended radiation exposure is the primary concern for nurses and other health care workers…
Radiotherapeutic advances like intensity-modulated radiation therapy (IMRT), for example, allow escalated radiation dose delivery to tumors while minimizing irradiation of a patient’s healthy, nontarget tissue. However, these advances have come with increased risks when targeting errors occur, such as those caused by patient movement or improper patient setup. IMRT also requires complex three-dimensional (3-D) computed tomography (CT) planning examinations that may frequently involve unnecessarily high radiation doses. Combined with an upward trend in patient radiation doses over recent decades, and improved cancer patient survival times, such considerations raise troubling questions about medically unjustified radiation doses and secondary tumor risks…. Medically unnecessary CT scans are prescribed for up to 20 million American adults and 1 million children each year. A 2007 analysis concluded that up to 2% of cancers diagnosed in the United States may be attributable to CT examinations. The justification of any radiological imaging must always be scrutinized, particularly in pediatric cancer patients, for whom any radiation poses a larger lifetime risk for secondary cancer than for older cancer patients. The availability and sufficiency of alternative imaging modalities that do not involve ionizing radiation, such as magnetic resonance imaging (MRI), should always be considered. Despite numerous calls for electronic medical records (EMRs) to include cumulative radiation dose information, only a handful of US hospitals and medical groups have adopted such systems to date.”

Jane Kiah. “The Importance of Radiation Safety for Healthcare Workers as Well as Patients.” Cathlab Digest Volume 20, Issue 1. January 2012 
About the author: RN, Director of Invasive Services, Baptist Cardiac & Vascular Institute, Miami, Florida; Program Director, Innovations in Cardiac and Vascular Care: Advanced Interventions for Nurses and Technologists, The International Symposium on Endovascular Therapy (ISET):

“One of the root causes of excessive radiation exposure arises from the fact that many in the healthcare field who work with radiation have received only rudimentary radiation training. Whereas interventional radiologists are trained in the safe use of radiation, interventional cardiologists and vascular surgeons, for instance, typically receive minimal radiation training. Because they typically are unfamiliar with all of the sources of radiation exposure, they may know little about risk-reduction and safety strategies. Compounding the problem is that, while a radiologist’s key team member is a radiologic technologist (who also has received radiation safety training), an interventional cardiologist or vascular surgeon’s key team member may be a nurse, who likely has received little to no radiation safety training. That’s not to say that all radiologists employ best radiation safety practices, either. Despite their training, many of them have become complacent.
Additionally, we often use far more radiation than necessary. In the United States, there is an increased emphasis on ensuring the highest quality images, which means more radiation. That’s not the case in Europe and Japan, where safety is more highly valued. The ideal dose is the least amount of radiation possible to produce an acceptable image. A good operator knows how to produce good images without excess radiation.”

Sources:

Bruno Chareyron (nuclear physics engineer) (editor). Almoustapha Alhacen, Anne Hollard. 1,600 Tons of Scrap Metals Missing from AREVA Facilities in Niger. Published by CRIIRAD, AGHIR IN MAN and AAM (Les Amis d’Aghirin’Man). January 17, 2013.

Kristin Shrader-Frechette. “Trimming Exposure Data, Putting Radiation Workers at Risk: Improving Disclosure and Consent Through a National Radiation Dose-Registry.” American Journal of Public Health 97, no. 10, 1782-1786. October 2007.

Jonathan Tirone and Andrew MacAskill. “Nuclear Risks at Bed, Bath & Beyond Show Dangers of Scrap.” Bloomberg News. March 20, 2012.

Hiroko Nakata. “Bridgestone to recall nearly 10,000 Jobno bicycles with radioactive baskets.” The Japan Times. April 20, 2012.


Walt Bogdanich and Kristina Rebelo. “A Pinpoint Beam Strays Invisibly, Harming Instead of Healing.” The New York Times. December 28, 2010. 

C'est à ce prix que vous mangez du sucre en Europe.
It is at this price that you eat sugar in Europe.
Words of the black slave of Suriname in Voltaire’s Candide, chapter 19. 1759.